Meeting Banner
Abstract #0076

Dynamic Imaging Using Sparse Sampling with Rank & Group Sparsity Constraints

Anthony G. Christodoulou1, 2, S. Derin Babacan2, Zhi-Pei Liang1, 2

1Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States; 2Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States

This work highlights a novel dynamic imaging method which jointly uses partial separability (PS), sparsity, and group sparsity constraints to enable sparse sampling in (k,t)-space. The specific formulation of the group sparsity spatially varies the effective model order of the PS constraint as a form of controlling the balance between the PS and sparsity constraints.

Keywords

abstract additive advanced allow allows another arranged array basis breath capture cardiac channels choices chosen coefficient coil column compressed computer constraint continuation controlling curves customized degrees describes determine develop ding domains done dynamic effective enabled enforced engineering example expressed fast features finite fitting flash flexible forms formulate frame frames freedom gives half handle heart hods holding institute integration interleaved joint jointly last leads lends majority matrix mode model models motion norm normalized noted novel operator operators optimization outside partial past penalty problem proposed pulse rank real reconstructed reconstruction remainder resolution rows sampled sampling scanner science sens sense sensing separability singular slice slid sliding solution solve space sparse sparsity spatial spatially spectral step strength subsets subspace subtle successfully technology temporal thereby transform trio typical various varying wavelet window