Meeting Banner
Abstract #0075

Joint Bayesian Compressed Sensing with Prior Estimate

Berkin Bilgic1, Elfar Adalsteinsson1, 2

1EECS, Massachusetts Institute of Technology, Cambridge, MA, United States; 2Harvard-MIT Division of Health Sciences and Technology, MIT, Cambridge, MA, United States

In clinical MRI, it is routine to acquire images with different contrasts for increased diagnostic power. Yet depending on the imaging sequences, acquiring certain contrasts is relatively faster. Here, a Bayesian compressed sensing (CS) algorithm that uses a fully-sampled image as prior information to help reconstruct images from undersampled k-space is presented. This method substantially improves the reconstruction quality, and allows joint reconstruction of multi-contrast images.

Keywords

absolute accelerated acceleration acquiring acquisition acquisitions among amount applied applying approximate asymmetric atlas avoids becomes brain characterized combination combining complex compressed computed consistent consists contrast contrasts controlling couple dataset datasets degree depicts derived desirable diagnostic directly distinction distribution division done early encoding error estimating exploits extend facilitates faster features find fixed formed framework full fully gradient gradients health help hence horizontal imposing improved index initialize institute inversion iterations iteratively joint jointly kept known late least likelihood makes matrix minimized modeled modulating multiplicative mutual noise normalized omit operator optimal overall package partial pattern penalty pixel pixels plots posterior preparations prior problem proton quality rage random reconstructed reconstruction recovery regularization representation retrospectively returned root routine rule sampled sampling scale scaled schemes sciences sensing serve significantly simplicity slice smallest software solution solving space sparse sparsity spatial square squares supply support taking technology theory type update utilize variance variation vary vector vertical weightings yielded yielding