Meeting Banner
Abstract #4497

Fast-Track Cardiac Diffusion Tensor Imaging with Compressed Sensing Based on a Novel Circular Cartesian Undersampling

Archontis Giannakidis1, Gerd Melkus2, Jing Liu2, David A. Saloner2, Sharmila Majumdar2, Grant T. Gullberg1, 2

1Radiotracer Development and Imaging Technology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States; 2Radiology and Biomedical Imaging, University California San Francisco, San Francisco, CA, United States

A novel 3D Cartesian under-sampling scheme is applied to reduce acquisition time in the Diffusion Tensor MRI of an excised rat heart. Results show that acceleration of factors up to 6 may be achieved without substantial impairment of accuracy.

Keywords

accelerated acceleration accuracy acknowledgments acquisition acquisitions analyzed anisotropy application applied applying artifacts avoid biological biomedical birdcage bottom cardiac challenge characterizing circular circus coil comparable compressed comprises computed conclude contract custom cylinder datasets dedicated density depicts derived development diameter diffusion diffusivity dimensional directly director division efficient entire environmental errors evaluate even excised exploit extra extremely fast feasibility find fold formalin fractional full fully generated global gradient grant greatest hardware heart helix hierarchical horizontal impairment implement in vivo laboratory limits linear long loss made maps materials matrix medical merit middle minor myocardium nominal norm novel office optimized orientation package pattern patterns preserved primary produced profile progress promising properties proposed providing quantify radiology randomized rather recent reconstructed reconstruction reduce reported required requiring resolution respectively retrospectively sampled sampling scanner scheme science sciences segmented sensing sets seven severely shorten software square submitted suited summarizes susceptibility suspended system table technology temporal tensor though track unit variable variance wall years