Meeting Banner
Abstract #4301

The Impact of Uncertainty in Nonlinear Temperature Dependent Constitutive Parameters on Predictive Computer Modeling of MRgLITT Procedures

David T. A. Fuentes1, Samuel J. Fahrenholtz2, Anil Shetty3, Roger J. McNichols3, Jeffrey S. Weinberg2, John D. Hazle2, Jason Stafford2

1The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States; 2MD Anderson, Houston, TX, United States; 3Visualase Inc., Houston, Tx, United States

Significant efforts are ongoing to incorporate predictive prospective computer simulation into MRgLITT procedures. Truly predictive prospective computer modeling requires substantial validation efforts and novel computer modeling techniques that incorporate the uncertainty of the input of computer model parameters. Statistical methods provide novel methodologies for modeling the complex bioheat transfer phenomena. Within the probabilistic setting of uncertainty quantification (UQ), the range of constitutive nonlinearities may be modeled through the uncertainty within the linear UQ problem. This novel modeling techniques facilitates a substantial increase in computational efficiency while maintaining the predictability in the computer modeling by incorporating the advanced bioheat transfer phenomena.

Keywords

absorption account acknowledgment actively advanced allocations amount assumed attractive behave biology body brain built chaos clinical common complex computational compute computer computing conductivity confidence considered constitutive cooled counter critically cubit damage decisions degree dependent described devices diagnostic diagram difficulty diffusing dimensional disease displays distribution efficiency efforts encompassed engineering equation evaluate every experimentally exposed fast feasible feedback frequency generated going head heat heating hence incorporate indicates induced integrated inter intervals investigate john known laser lesions linear literature location maintains making market measured medical medicine mesh methodologies model modeling models neurological neurosurgery nonlinear nonlinearities novel ongoing optical output overlapping parts patient perfusion phenomena physics pixel polynomial positioned post predictability predictive probabilistic problem procedure procedures products profile prospective proton providing random real resources retrospective scanner scattering scientific sense serve setup sheath simulation simulations solutions solved spatial statistical statistically substantial supercomputer systems taken temperature thermal tissue transfer treatment uncertainty uncorrelated uniform variability variables visualization whole