Meeting Banner
Abstract #4197

Systematic Investigation of Various Strategies for T2* Mapping for Liver Iron Quantification in the Presence of Noise

Takeshi Yokoo1, 2, Qing Yuan1, Ivan E. Dimitrov2, 3

1Radiology, UT Southwestern Medical Center, Dallas, TX, United States; 2Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, United States; 3Philips Medical Systems, Highland Heights, OH, United States

Various strategies for T2* mapping for liver iron quantification in the presence of noise is investigated in this study, including log-linear and nonlinear curve fitting, either using magnitude or complex signal data.

Keywords

abnormally accuracy accurately acquisition added advanced adversely affects alternative another apparent applied assess assume audience blood body chelation clinical complex computation concentration consistency constant constructed consuming cytotoxic dataset datasets decay decaying dependent dilution disease dissolving dominated done employ equation equivalently estimating estimation exhibit expected explicit explicitly failed field fitting genetic gradient grid heights hence improve inaccuracy inaccurate increasing indicated investigate investigation iron iterative least likely linear liver long longer magnitude mapping marker medical metabolism model modeled modeling models monitoring monotonic nature necessary negligibly noise noninvasive nonlinear nonzero organs overload overloaded paramagnetic part particles patients perhaps phantom physicists pixel practical practice presence promising quantification radiologists radiology random rapidly real reason regression require required requires researchers respectively routinely scaling sense serial serve severe severely short shortening significantly simulated since slope southwestern square strategies super surrogate system systematic systematically systems target term therapy transform transverse true variable variance various whereas whole wood written yuan