Meeting Banner
Abstract #4148

More Accurate Volume and ADC Measurements of Heterogeneous Tumor in Diffusion-Weighted MR Imaging: With Correlation to PET/CT

Nan-Jie Gong1, Chun-Sing Wong1, Yiu-Ching Chu2, Bingsheng Huang1, Queenie Chan3

1Diagnostic Radiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; 2Radiology, Kwong Wah Hospital, Hong Kong, China; 3Philips Healthcare, Hong Kong, China

To more precisely segment high-cellularity tumor tissues in heterogeneous lesions and therefore more accurately measure volumes and ADCs, we proposed a semi-automatic method based on thresholding both the b0 images and the ADC maps. Using k-means clustering algorithm, B0 images and ADC maps in the contoured regions were separately classified into three clusters (with low, intermediate and high value). The pixels with low intensities on b0 images and those with high ADC values on ADC maps were excluded, leaving only the probable high-cellularity tumor tissues. The volumes measured using the proposed method had perfect concordance with those in PET/CT. Furthermore, stronger correlations between ADC values and SUV values were achieved using this method.

Keywords

according accurate accurately achieved audience automatic china classified clustering clusters concordance consensus contoured correlated correlation correlations defined denoted diagnosis diagnostic diffusion dimension drawn error excluded faculty furthermore gastrointestinal gist gong greatly gross heterogeneous hong hospital hyper indicated intensities intermediate leaving lesion lesions linear manually maps measure measured medicine metabolic metastatic monitoring nearly overestimating patients perfect pixels precisely probable proof proposed radiologists radiology regressions remaining representative respectively response segment segmented selected semi separately seven significantly sing slope smallest stronger strongly substantially suggested target thirty threshold thresholding tissue tissues treatment tumor twenty volume volumes