Meeting Banner
Abstract #3826

L1-Regularized GRAPPA Kernel Estimate

Yu Ding1, Rizwan Ahmad1, Hui Xue2, Samuel T. Ting1, Ning Jin3, Orlando P. Simonetti1

1The Ohio State University, Columbus,, OH, United States; 2Corporate Research, Siemens Corporation, Princeton, NJ, United States; 3Siemens Healthcare, Columbus,, OH, United States

SENSE is a widely used parallel imaging technique. The so-called g-factor represents how noise in the raw data affects the noise in the reconstructed image. However, the g-factor calculation does not take into account the noise in the channel sensitivity map. In this abstract, we present a noise transfer model in SENSE reconstruction that takes into account the noise in both the raw data and the channel sensitivity map. A phantom study showed that the model has satisfactory accuracy. We observed that a large portion (> 35%) of the image noise originates from the noise in the sensitivity map.

Keywords

absolute accepted accuracy adaptively amplification amplitude applied apply applying array artifact assuming automatically bandwidth benefit bottle channel chosen cine clinical coefficients coil compact compactness computation computed computer condition core corporate corporation dashed degrade ding domain effectively either error established estimation evaluated even fidelity frame frames fully future gain generated hints identical implementation implemented improve improved incorporation independent indicates instead international introducing iterative kernel kernels larger latter linear longer magnitude matrix memory metric minimization model much nature needs noise norm noted novel often optimal optimization optimize parallel personal phantom pixel portion positive potentially practice preserves prevent problem proceedings promote propose rapid real receiver reconstruct reconstructed reconstruction rectangular reduce regression regularization regularized relation relatively remaining replace robustness sampled scanner select selectively sensing series shape shorter significantly simple software solution solved space sparsity square statistical still strength strengths studied studies support suppressed suppressing thick traditional transform typically uniformly utilizing warranted water wavelet wide written