Meeting Banner
Abstract #3822

Denoising in Parallel Imaging Via Structured Low-Rank Matrix Approximation

Derya Gol1, Lee C. Potter1

1Electrical & Computer Engineering and Davis Heart & Lung Institute, The Ohio State University, Columbus, OH, United States

Interpolation approaches in parallel MRI exhibit a noise amplification effect that may be mitigated via regularization techniques which are computationally expensive. In this study, we propose a pre-processing technique based on structured low-rank matrix approximation via truncated singular value decomposition (TSVD), which is able to suppress noise and ghost artifacts efficiently. TSVD method has been previously used in parallel MRI to improve the conditioning of the system matrix and to reconstruct k-space via matrix completion. In contrast to previous work, here rank properties are used to denoise acquired data in a computationally simple preprocessing for GRAPPA reconstruction.

Keywords

able acceleration addition adjacent amplification applied applies approaches approximated approximation artifacts averaging better block blocks blurring bottom calibration central channel channels chosen closest coil coils completion computationally computer conditioning conjunction contrast convolution correlation create decomposition distorts effective efficiently electrical eliminating engineering equal equations exhibit exhibits exist expensive extracting fewer filters finite five fold form formed free generically ghost heart implemented improve impulse institute interpolate interpolation iterations iterative iteratively jointly kernel lung matrices matrix mitigated noise noisy norms nullity observations operator original parallel peak potter practice preprocessing previous previously processing properties property propose proven rank reconstruct reconstructed reconstruction reconstructs reduces regularization regularized represent represents respectively response rightmost robust samples sensitivities sequentially severe shared simple simulated since singular smooth space spatial stat step structured sufficient suppress system tech theory thresholding thresholds truncated twelve uniform uniformly variation written zero zoomed