Meeting Banner
Abstract #3817

Suppressing Mulit-Channel Diffusion Tensor Imaging Noise Using the Data Consistency Constraint

Ying-Hua Chu1, Shang-Yueh Tsai2, Yi-Cheng Hsu3, Wen-Jui Kuo4, Fa-Hsuan Lin1, 5

1Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan; 2Graduate Institute of Applied Physics, National Cheng-Chi University, Taipei, Taiwan; 3Department of Mathematics, Nnational Taiwan University, Taipei, Taiwan; 4Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan; 5Department of Biomedical Engineering and Computational Science, Aalto University, Espoo, Finland

We exploit the redundancy among channels of a receiver coil array to improve the SNR of DTI. Our method uses a universal kernel to enforce the data-consistency (DC) among k-space data across receiver coils. This DC constraint was then applied to all diffusion-weighted images to suppress noise disturbing the data consistency required by the parallel MRI theory. Experimental results at 3T with b = 4,000 s/mm2 demonstrate that the SNR can be improved by approximately 40% by applying this constraint to DTI reconstructions.

Keywords

accelerate acquisition aims alternatively among amount applied applying approximately arbitrary array arrays arrow artifact artifacts assuming audience biomedical bundles channel channels chose chosen clearly cocoa coded coil coils color combination combined compromised computational concatenation conjugated consistency consistent constraint convolution coordinates cost denotes described detection diffusion distinct disturbing encoding enforcing engineering errors estimating experimental explicitly exploit expressed fast feature final fractional frontal function generally generating ghost gradient graduate harmonics head heads homogeneous improve improved improvement incorporate index indicating institute intensity iterative kernel linear lobes longer manning maps mathematically mathematics matrix medical ming minimize minimizing modulation motion moving national noise noisy operation optimally parallel particularly physics potentially practically practice propagate proposed receiver reconstructed reconstruction reconstructions reduced reducing reduction redundancy regeneration regularization relationship relatively removal scanner science scientists self sense sensitivity slice slices smash smooth solutions space sparsity spatial spatially spirit structure suppressed suppressing table target temporal tensor usually vicinity visible visually white yellow