Meeting Banner
Abstract #3814

Denoising Image Sequences: Algorithm and Application to Quantitative MR Imaging

Fan Lam1, 2, Bo Zhao1, 2, Michael Weiner3, 4, Norbert Schuff3, 4, Zhi-Pei Liang1, 2

1Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States; 2Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, United States; 3Center for Imaging of Neurodegenerative Diseases, Department of Veteran Affairs Medical Center, San Francisco, CA, United States; 4Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, United States

We propose a new method to jointly denoise a sequence of noisy images typically acquired in quantitative imaging experiments. The proposed method uses a penalized maximum likelihood estimation formalism, integrating two modeling constraints: a low-rank model that captures any correlation in the edge structures from one frame to another and a penalty function that promotes sparse edge structures. A computationally efficient algorithm is developed to solve the associated optimization problem. Representative results from a parametric mapping experiment are presented to demonstrate the performance of the proposed method.

Keywords

acquisition added affairs alternating alternatively although application applications applied applying assuming assumptions augmented auxiliary biased biomedical champaign channel coil columns complex components compressible computer consider consistency constraint convergence corners correlated correlation decomposition described develop diffusion dimensions diseases distant distinct echoes edge edges efficient electrical enforce engineering entire equivalently error errors especially estimation evaluated excellent extended filtering finite five fixed formalism formulation frames function gold gradually grant head highly illustrates improve incorporated individual initialized integrate introduce iterations joint jointly likelihood linear mapping maps matrices matrix medical minimization model modeling neighboring noise noiseless noisy note operator optimization original parametric partially penalized penalty performance preservation problem process proper propose proposed quantitative radiology rank readily reconstruction reduced reduction regularization respectively root scanner series sets shared simulate simulated solve solving sparse sparsity spatial specifically spectroscopic spin square squares straightforward structures subproblems supported temporal trade treated typical update upper variable various veteran white whose widely wright zoomed