Meeting Banner
Abstract #3810

SWIRLS 3D CE-MRA with Field-Corrected Sparse SENSE Reconstruction

Joshua D. Trzasko1, Yunhong Shu1, Armando Manduca1, John Huston III1, Matthew A. Bernstein1

1Mayo Clinic, Rochester, MN, United States

In this work, we describe a sparsity-driven reconstruction framework for single-phase (non-Cartesian) SWIRLS 3D CE-MRA that incorporates both sensitivity encoding and off-resonance correction. As demonstrated, the proposed framework substantially reduces both noise amplification and geometric distortion that are routinely present in, and can compromise the diagnostic utility of, standard gridding reconstruction images.

Keywords

accounting accounts achieving acquisition acts additionally adoption advanced amplification anal angiography anterior approximation assigned audience avoidance beck benefit bolus cache calibration cavities cerebral channel circle clinic coil compensation compromise computational confound constant contrast corrected correction density describe developers development dimension distortion dual duration efficiency employing encoding enhanced executed expected expense fast field flush forward framework functional gains gauss generalization generalized geometric hardware head highlight identically ignoring implemented improve improved improvement include incorporates induced injected intensity iteration iterations john kaiser keeling lifting makes math matrix mayo memory migrating mitigating model multichannel nasal near needed noise note operator optimization oversampled paradigms pathways patients penalty performance platforms potential power previously profiles promise protocol random receiver reconstruction reconstructions reduce reduction regression regularization regularized saline samples scanned segmented segments selected sense sensitivity shot sinus slab sparse sparsity strategies strategy structure suited susceptibility swirls target thin tissue trajectory transform uniform users utilizing variational vessel wavelet window windowed