Meeting Banner
Abstract #3803

Motion Residual Reconstruction Using Low Rank Property of Similarity Patches in Motion Compensated Compressed Sensing Dynamic MRI

Huisu Yoon1, Daniel Kim2, Kyung Sang Kim1, Jong Chul Ye1

1KAIST, Daejeon, Korea; 2The University of Utah, Salt Lake City, UT, United States

Recently, many compressed sensing (CS) based algorithms have been developed for dynamic MR imaging applications by exploiting sparsity in temporal transform domain. For example, in k-t FOCUSS with motion estimation and compensation (ME/MC), when a high resolution reference frame is available, ME/MC is shown a quite effective sparsifying transforms. However, one of the limitations of ME/MC is that the energy of the residual measurement after motion compensation is significantly reduced compared to the original k-space measurement. Hence, a new reconstruction algorithm for motion residual is required that judiciously reconstructs geometrically meaningful features. One of main contributions of this paper is a novel patch-based signal processing algorithm for motion residual reconstruction that overcomes the limitation of the existing k-t FOCUSS with ME/MC. More specifically, we impose a non-convex patch-based low-rank penalty that exploits self-similarities within the residual images. This penalty is shown to favor capturing geometric features such as edges rather than reconstructing the background noises. To solve the resulting non-convex optimization problem, we propose a globally convergent concave-convex procedure (CCCP)2 using convex conjugate, which has closed form solution at each sub-iteration.

Keywords

acceleration accuracy address aliased aliasing alternating amount applications applied artifacts assumes available background blurring boundaries capturing cardiac city closed coherent coil compensated compensation components compressed computation concave confirmed conjugate contain converge convergent convex cost deal diastole domain dynamic easily edges effectively encoding estimation example existing experimental exploiting extensive favor features fell form formulation foundation frame free function general generated geometric geometrically gradient grant ground guaranteed hence impose imposing improved improves incorrect issue iteration judiciously laboratory lake limitation limitations local mainly many mathematical meaningful medicine minimize motion near next noise noises norm note novel nuclear original outperforms overcomes paper patch patches penalty prediction prior problem procedure processing prone property proposed proxy radial rank rather reconstructing reconstruction reconstructs recovers removes representing required residual resolution respectively retains salt sang scheme science search sensing shrink significantly similarities similarity singular slice solution solve solved sparsity specifically step still structures temporal term terms thresholding truth viii wall