Meeting Banner
Abstract #3761

Generalized Multiple Averages (GRAMA) for Motion Compensation

Shujing Cao1, Feng Huang2, Rui Li1, Chun Yuan3

1Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China; 2Philips Healthcare, Beijing, China; 3Department of Radiology, University of Washington, Seattle, WA, United States

A new retrospective motion compensation method named as GeneRAlized Multiple Averages (GRAMA) is proposed. GRAMA synthesizes two copies of original k-space with relative consistency using a couple of optimized convolution kernel. Based on the interleaved data acquisition manner, error in different k-space copies is inherent. Instead of average with original k-space like that in conventional multiple averages method, GRAMA directly use the average of two synthetic k-space to reconstruct motion corrected image. Volunteer experiments indicate GRAMA effectively balances SNR preservation and artifact reduction.

Keywords

abnormal acquisition advantage advantages alternatively among applied approaches approximated arrows artifact artifacts averaging axis background balances best better biomedical black breathing brightened carotid caused central certain channel channels china class coil colors compensation consistency contain contaminated convolution copies copy correlated correlation corrupted couple dealing design dispersed effective effectively eight encoding engineering entropy error errors especially essential example except excitation fewer final fixed focuses free frequency full generalized generally generate generated hence ideally incoherency incoherent inconsistencies indicate indicates induced interleaved interpolation introduced kernel kernels know lead like localized locations manner measure medicine might motion motions named neck neighboring noise optimization original parallel partly performance polluted possessing preservation probably process proposed proposes quantitative radiology reconstructed reduce reduction relatively residual respectively retrospective scanner school segments select selects self sets severe shanghai shape shoulder significantly since space spaces strong strongly subsets successful swallowing synthesized synthetic system takes target trains turbo validate visibility volunteer yuan zoomed