Meeting Banner
Abstract #3758

High-Resolution Multi-Shot Spiral Diffusion Tensor Imaging with Inherent Correction of Motion-Induced Phase Errors

Trong-Kha Truong1, Arnaud Guidon1

1Brain Imaging and Analysis Center, Duke University, Durham, NC, United States

In multi-shot spiral diffusion tensor imaging, subject motion causes phase errors among different shots, leading to signal loss and aliasing artifacts. A novel method is proposed to inherently correct for these errors without requiring a variable-density spiral trajectory or a navigator echo. This method uses a sensitivity encoding reconstruction algorithm to estimate the phase error for each shot and a conjugate gradient algorithm to correct for them. In vivo experiments were performed to demonstrate that it can inherently and efficiently correct for phase errors caused by rigid and nonrigid motion, without increasing the scan time or reducing the signal-to-noise ratio.

Keywords

achieve adoption advantages affected aliasing alternative among anatomical another arbitrary artifacts averaging basic benefits blurring body brain causes central challenging channel clinical cluster coded coil color combined composite computation conjugate consists constant contrast correct corrected correction corrects density designed details diagram diffusion duke dynamic eddy effectively efficiently encoding error errors estimation even existing expected extensive facilitate final fine form fractional free full gradient grants head healthy induced inherent inherently instructed interpolated iterative leading limited linear long longer loss magnitude mapping maps matrix metrics motion navigator noise nonlinear nonrigid padding parallel penalty planar profiles promising proposed quality reconstruct reconstructed reconstructing reconstruction remain requires residual resolution respectively restrained revealing rigid robust scanner schematic sense sensitivity shot shots since slice slices slowly smoothed space spatial spatially spin spiral still subject subjects subsequent substantially suffer suffers superior supplied supported susceptibility tensor though throughout trajectories trajectory trans twice typically uncorrected unwrapped variable vary varying volunteers wider