Meeting Banner
Abstract #3734

A Bilinear Noise Transfer Model for SENSE Reconstruction

Yu Ding1, Rizwan Ahmad2, Hui Xue3, Lee C. Potter2, Samuel T. Ting2, Ning Jin4, Orlando P. Simonetti2

1The Ohio State University, Columbus, OH, United States; 2The Ohio State University, Columbus,, OH, United States; 3Corporate Research, Siemens Corporation, Princeton, NJ, United States; 4Siemens Healthcare, Columbus,, OH, United States

SENSE is a widely used parallel imaging technique. The so-called g-factor represents how noise in the raw data affects the noise in the reconstructed image. However, the g-factor calculation does not take into account the noise in the channel sensitivity map. In this abstract, we present a noise transfer model in SENSE reconstruction that takes into account the noise in both the raw data and the channel sensitivity map. A phantom study showed that the model has satisfactory accuracy. We observed that a large portion (> 35%) of the image noise originates from the noise in the sensitivity map.

Keywords

abstract acceleration account accuracy addition affect affects appear array assessing assume assumes available bandwidth becomes bilinear calculation called care channel check cine coil column columns common completely computer consistent core corporate corporation deviations diagram ding dynamic encoding entries equation error especially evaluate evaluated exceeds experimental frame frames fully good hand help ideal identical impact improve indicates input introduced inversion investigate known linear listed maps matrix measured measuring memory model must negligible noise novel originates pair pairs parallel perfect personal phantom pixel portion potential potter practice process proposed pseudo quad real receiver reconstruct reconstructed reconstruction refer remaining represent represents respectively sample sampled satisfactory scanner self sense sensitivity series side significantly slice software solution space spatial special statistical strict suggested summarized support table take taken takes temporal theory thick ting traditional transfer types uncorrelated validate widely words wrapped written