Meeting Banner
Abstract #3731

Time Correlation of EPI Versus Real-Time fMRI Time Series

Radu Mutihac1, 2, Allen Braun3, Thomas J. Balkin2

1Department of Physics, University of Bucharest, Bucharest, Bucharest-Magurele, Romania; 2Psychiatry & Neuroscience, Department of Behavioral Biology, Walter Reed Army Institute of Research, Silver Spring, MD, United States; 3Language Section, NIDCD / National Institutes of Health, Bethesda, MD, United States

Analysis of real-time fMRI time series is subject to temporal dispersion of the hemodynamic response and aliasing of physiological noise. Echo-volumar imaging (EVI), inverse imaging (InI), highly undersampled projection imaging (PI), and compressed sensing (CS) imaging reconstruction enable temporal resolution down to 100 ms. Extremely short acquisition (TR) poses the problem of serial correlations among voxels studied here in the context of autoregressive (AR) models.

Keywords

acquisition acquisitions actual adapting adequacy aliasing analyses anding appropriate army auto autocorrelation better biology bold brain carried cognitive compressed computed concluded confidence connected consisted construction context contrast contribute correlations crucial decomposition decreases discard discarded dispersion domain driven dual duals dynamical dynamics enable enabled ency ending error evaluated excitations experimental explain extremely fast finger fitted fitting flattening full fully funded health highly hypothesis independence inferred inputs institute institutes intervals inverse likewise mates math matrix mode model modeling models modified multivariate national networks next noise oscillation output parametric past periods persistence plateau plot portmanteau poses potential prediction process processes processing program psychiatry rapidly real realistic reed refining representation residua residuals resolution response responsible running schwa sciences section selection sensing serial series session short sign silver since slab slices smallest squared statistic statistical statistically stochastic subjects suggests summing systems target temporal terms trans typically underlies validation versus volumes white whiteness