Meeting Banner
Abstract #3416

A Method for Identifying Tumor Sub-Regions with Similar Enhancement Characteristics Based on Volumetric High Resolution DCE-MRI

Ergys Subashi1, 2, Everett J. Moding3, James R. MacFall4, 5, David G. Kirsch3, Yi Qi, 25, G. Allan Johnson2, 5

1Medical Physics Graduate Program, Duke University Medical Center, Durham, NC, United States; 2Center for In-Vivo Microscopy, Duke University Medical Center, Durham, NC, United States; 3Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States; 4Department of Biomedical Engineering, Duke University Medical Center, Durham, NC, United States; 5Department of Radiology, Duke University Medical Center, Durham, NC, United States

The histogram or mean value of the pharmacokinetic parameters derived from dynamic contrast-enhanced MRI is usually obtained from a manual ROI or from the entire tumor volume. These metrics include tumor regions in which the interpretation of the kinetic parameters is unclear (such as in necrotic areas). In five separate tumor cell lines, we have found that the histogram of the time-to-peak (TTP) parameter can be used to identify tumor sub-volumes with similar enhancement properties. Preliminary results show that the magnitude of response to therapy may be heterogeneous across these sub-regions.

Keywords

accuracy acquisition adapted adjacent allowing analyze array assessment attempted basis believe biology biomedical blood cancer cell characteristics clearly coil combined consecutive core curve curves define degree demonstrating density dependent diagnosis diagnostic differently discrete discriminating distinct duke dynamic element enhanced enhancement enhancing entire excite extended fast findings five flow generated graduate healthy heterogeneous histogram histograms identified identify identifying implanted in vivo include incorporating indistinguishable induced injection inside intensity interleave interleaves isotropic kinetic kinetics laboratory leakiness least length listed located loveless magnitude majority malignant mammary manually maps matrix medical microscopic microscopy model nodal normalized patterns peak peaks periphery physics physiologic pixel populations predictable presence primary program projection protocol providing quantitative radiology reach receive reconstruction representative resolution respond response reveals sarcoma scale segment segmented selected semi sensitivity separated slices slow space spatial specificity spectrum spline structurally studied studies subpopulations suggesting surface table temporal therapy tics tumor tumors unclear vascular vessel vessels views volume volumes volumetric window