Meeting Banner
Abstract #3315

Characterization and Mitigation of Signal Leakage in Simultaneous Multi-Slice (SMS) Acquisition

Kawin Setsompop1, 2, Stephen F. Cauley3, Himanshu Bhat4, Jonathan R. Polimeni1, 2, Lawrence L. Wald1, 2

1A.A. Martinos Center for Biomedical Imaging, MGH, Charlestown, MA, United States; 2Harvard Medical School, Boston, MA, United States; 3Massachusetts General Hospital, Charlestown, MA, United States; 4Siemens Medical Solutions, Charlestown, MA, United States

Simultaneous Multi-Slice (SMS) acquisition with blipped-CAIPI scheme has enabled dramatic reduction in imaging time for fMRI and Diffusion imaging. The signal leakage is an important metric that characterizes signal corruption (due to leakage of signal from one slice to another) for such an acquisition. . In this work, we demonstrate a technique that can be used to rapidly compute signal leakage metrics, and demonstrate two techniques to modifying the slice-GRAPPA (SG) reconstruction to significantly reduce leakage artifact without affecting the g-factor penalty.

Keywords

acceleration achieve achieved acquisition activation adding additionally address aims aliased allow amplitude analyzed another artifact artificially audience best better biased biomedical blipped blocked blueprint bypassing calculating calculation characterization characterizes characterizing coil collapsed combination combining coming component components compute consuming contains contrast convolution corruption create created depend dependent diagram diagrams diffusion distinct dramatic drift enough evolution fact fidelity find frequency functional general green help hold human identical illustrate important imposed indicates individually informs introduced isotropic issue kernel kernels lead leading leakage linear maps matches matrix measure medical metric metrics minimizing modified modify modifying modulation motion nonetheless occur operation optimization parallel particular pass passed pattern penalty performance positions previously prior process processed project propose random rapidly reconstruction reconstructions reduce reduced reduction related relationship represents respiratory scanner school series significantly simulations simultaneous sinusoidal slice slices solutions solving spatially split support system target tend term thereby training trio typical underlying utilizes variants various varying verified