Meeting Banner
Abstract #3281

Stable, Dynamic & Variable Functional Networks

Suresh Emmanuel Joel1, Anand Narasimha Murthy1, Ek T. Tan2, Dattesh D. Shanbhag1, John F. Schenck2, Rakesh Mullick1

1Diagnostics and Biomedical Technologies, General Electric Global Research, Bangalore, Karnataka, India; 2Diagnostics and Biomedical Technologies, General Electric Global Research, Niskayuna, NY, United States

Differences in functional networks have been used to understand brain in health and disease. Variability in functional networks can be due to disease, state (of mind) or trait. Here we study intra-subject and inter-subject reproducibility and classify in to a) networks that are highly reproducible within and across subjects making them good candidates for studying changes associated with disease, b) networks that are variable within subjects making them good candidates for studying state and c) networks that are variable between subjects making them good candidates for studying traits.

Keywords

account accurate addition additional arise associations atlas band biomedical candidate candidates causes compute computed concurrent confounds connectivity consistently corrected correlation course courses create decouple default deviation diagnostics discovery disease diseases dorsal drug dynamic electric episodic every filter filtered five fluctuations focused functional general global good green hence inter interpolated intra investigated john least location locations makes maps matrix measure mind minute mode mostly motion motor much nature network networks neuronal nodes nuisance origin pairwise panel participant participants pass pathway personality physiological physiology placed post potential potentially previous primary produced prove quadrant radius registered registration regression relatively removed repeatability reproducibility resolution resting runs scanner seed seeds sensory session sessions side signature similarity site slice slices smoothed sources spatially spheres square stable structural studies subject subjects surprisingly system technologies temporally trait traits typically unique useful validate variabilities variability variable ventral visual zero