Meeting Banner
Abstract #3258

Correcting Motion Induced Connectivity Changes in Resting-State fMRI

Ali-mohammad Golestani1, Mariana Lazar1

1Radiology, Center for Biomedical Imaging, NYU Medical Center, New York, NY, United States

Head motion during Resting-State fMRI artificially alters functional connectivity maps, with its effects persisting even after typical correction including frame realignment and regression of motion parameters. Adequate methods for correcting motion artifacts are currently a topic of debate. In this study we compared the ability of basic correction, data scrubbing (excluding volumes with excessive motion from the dataset), and independent component analysis (identifying and excluding motion components with ICA) to correct motion-induced connectivity alterations. Our result shows that ICA outperforms basic correction and data scrubbing and can suppress motion-induced connectivity changes.

Keywords

adequate affects alignment alleviate altered appears approaches artifacts assigned atypical basic best biomedical brain calculating caution comparing complex component components connectivity consistent corrected correcting correction cortex customary decrease default deleterious developed deviation diminish disorders displacement dysfunction effective effectively efficacy eliminate eliminating employed evaluated examine examining excessive excluding extended extra extraction feasibility field filtering frames frontal functional generated give greater head healthy identification identify identifying importance included inclusion independent indicating induced inhomogeneity introduced investigated involves kernel larger lateral locally maps measures median medical mentioned middle mode motion movement must network networks newly nineteen occipital ones paramount patterns plus pole populations power problems processing proper questions radiology raises reducing registration regression regressors regular related remnant remove removing resting restricted sampling scanned scanner scrubbing seem several slices smoothing software spatial spurious statistics step steps studies subjective subjects suggest suppressing temporal totally trio typical upon validation variable variance variety volume volumes ways white wide wise