Meeting Banner
Abstract #3218

Effects of Noise Estimation Error on the Accuracy and Precision of Maximum Likelihood Estimation of Apparent Diffusion Coefficient

Jing Yuan1, Qinwei Zhang1, David Ka Wai Yeung1, Anil T. Ahuja1, Ann D. King1

1Department of Imaging and Interventional Radiology, Chinese University of Hong Kong, Shatin, NT, Hong Kong

Maximum likelihood estimation (MLE) is preferable as an unbiased estimator compared to least-squares estimation (LSE) due to the Rician noise distribution of magnitude MR image. Accurate noise estimation is essential for MLE that affects accuracy and precision of MLE, but is often hampered by many factors in practice. We investigate the effects of erroneous noise estimation on ADC estimation by MLE through simulation and ADC mapping of clinical DWI images. Results show that MLE accuracy and precision are significantly reduced by noise estimation error at low signal-to-noise ratios (SNRs), but exhibit fairly good robustness to such errors at high SNRs>10.

Keywords

accuracy accurate achieved added aims although always apparent applied around artifact artifacts background better biased carefully clinical coefficient coil combination considerably consistent defined delineated deviates deviation diffusion distribution distributions divided erroneous error errors essential estimation evaluate even exhibited fairly filters generated ghosting good grant hampered hand head hong inappropriate increasing investigate king larger lead least likelihood listed magnitude many mapping maps matrix median metastatic motion neck node nodes noise noiseless offers otherwise overestimated particularly practice precision proposed radiology reduced reduction relatively robust robustness scanner selected selection shot simulation simulations slightly smaller smoothing squares statistics still subject supported suppressed systematically table theoretically true tumor tumors unbiased underestimated underestimation variance walker worse yellow yuan