Meeting Banner
Abstract #3215

Quantitative Analysis of Directional Bias Imposed on Primary Eigenvector Estimations in DTI When Gradient Table Correction Is Neglected

Ali Ersoz1, Volkan Emre Arpinar2, L. Tugan Muftuler2, 3

1Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, United States; 2Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States; 3Center for Imaging Research, Medical College of Wisconsin, Milwaukee, WI, United States

We conducted a quantitative analysis of directional bias imposed on primary eigenvector (PE) estimations in DTI when gradient table is not reoriented after motion correction. We compared this bias with the inherent uncertainty in the estimation of orientation distribution functions. We found that 90% percent of the voxels in cingulum and CST tracts had substantially smaller directional adjustments on the PE than the uncertainty in their estimations. We also demonstrated that this directional bias might accumulate along the fiber tract and lead to inaccurate fiber tracking. The findings were validated using simulations.

Keywords

accumulate acquisition adjustments affine although amount analyze applying around asymmetric audience axial azimuth background best bias biased biophysics blue board broad caused characterizes children clearly coherently college color convention corrected correction corrections curvature deformations degrees described development deviate diffusion directional dispersion distributed distribution diverting dots eigenvalue eigenvector ensure estimation estimations evident experimental fiber findings foreground fractional functions general generally generated geometric gradient head histograms illustrate illustrated imposed induced inherent inside instance institutional investigated larger lead magnitude major maps medical might minutes model models motion much neglected neurosurgery noise normalized noted ongoing orientation orthogonal otherwise outer package parents partial particular percentage plot preserving primary program pulse purely qualitatively quantify quantitative random remaining reorientation reoriented review selected sense simplified simulations since slices smaller software spatial sphere step studied subject subjects subsequent suggested surface symmetrically system table target tensor tensors though tracking tract tracts trajectory transformations uncertainty uncorrected understand unit validated vector vectors zenith