Meeting Banner
Abstract #3213

Comparison of Image Quality Control Tools for Diffusion Tensor Images

Bilan Liu1, Tong Zhu2, Jianhui Zhong2

1Electrical and Computer Engineering , University of Rochester , Rochester , NY, United States; 2Imaging Sciences, University of Rochester, Rochester, NY, United States

Diffusion tensor imaging (DTI) is susceptible to numerous artifacts. Therefore the Quality control (QC) of the Diffusion tensor images is critical for image interpretation and diagnostic accuracy. The goal of this study is to develop an experimental protocol to help choose between existing QC tools by analyzing the precision and accuracy of fractional anisotropy (FA), mean diffusivity (MD) calculated by those tools in the presence of major DTI-specific artifacts. Both simulation data obtained using Monte Carlo simulation and human in vivo data were used to help assess the effectiveness of those QC tools.

Keywords

accuracy acquisition acquisitions adverse aimed although among analyze another applied artifact artifacts automated bars become blue brain calculation cardiac careful characteristics check choose combination compensating complicated computed computer conditions cons contaminated control correcting corrupted critical dataset datasets decreased derived detection determining detrimental develop diagnostic diffusion discarding distributed ease easiest easy effectiveness efficiency either electric electrical error evaluated evenly existing fast fastest free fully function general good gradient gradients gray help helpful hemisphere human identifying impair in vivo increasing induced inspection instances intensity investigated issue lead leads mainly maintained major many matrix measured measures moderate motion near none numerous objective often overall partially percentage performance performances pipelines pixel popular precision processed prone protocol pulsation quality quantify quantitatively reliability remaining repeat repeated samples sciences seemly several simulated simulation simulations slice software stability stable strictly studies studio subject susceptible synthetic table tensor tensors tissue tools tortoise trace type unevenly unit unstable validity variations visual white yields