Meeting Banner
Abstract #3184

Evaluation of Compressed Sensing Based Diffusion Spectrum Imaging Use of 3T MR

Ping-Hong Yeh1, Namgyun Lee2, John Morissette3, Binquan Wang1, Wei Lui1, John M. Ollinger3, Terrence R. Oakes3, Gerard Riedy3

1Henry Jackson Foundation for the Advancement of Military Medicine, Rockville, MD, United States; 2Korea Basic Science Institute, Daejeon, Korea; 3National Intrepid Center of Excellence, Walter Reed Army Medical Center, Bethesda, MD, United States

Recent work using Compressed Sensing (CS) reconstruction shows promising in greatly reducing diffusion spectrum imaging (DSI) scan time without jeopardizing critical image information. We evaluate the performance of several CS algorithms on simulated fiber data and human brain DSI data acquired by a clinical 3T MR scanner within an acceptable time frame (~ 20-25 minutes).

Keywords

accelerate acceleration acquisition adaptive added additional advancement although anal anisotropy anterior application army basic better brain bundles capable channel clinical coil comparable complex compressed computation coupled critical crossing cube cubes days density description developed dictionaries dictionary diffusion diffusivity displacement distributions dorsal efficiency encoding ensemble environment equipped error errors evaluate evaluated evaluation excellence fiber fibers focal foundation fractional frame fully generalized greater greatly grid ground head healthy henry hinder hong hour human imposing in vivo inferior institute intrepid iterative jeopardizing john likely limited long math maximal medical medicine metrics military minutes mixture model motion national noise noiseless norm orientations penalty performance ping possess post processing promising propagator pure quality radius recently reciprocal reconstruction recover reduce reed relatively representation resolving retrospectively sampled sampling scanner schemes science sensing sets several shrinkage simple simulated simulation simulations solver space sparse spectrum substantially system training transform trends truth unit variable volunteer yielding