Meeting Banner
Abstract #3175

Diffusion Pore Imaging by Double Wave Vector Measurements

Tristan Anselm Kuder1, Frederik B. Laun1, 2

1Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; 2Quantitative Imaging-Based Disease Characterization, German Cancer Research Center (DKFZ), Heidelberg, Germany

NMR diffusion measurements allow collecting the signal from the whole sample. This mainly eliminates the problem of vanishing signal at increasing resolution. It has been a longstanding question if the exact shape of closed pores can be determined by diffusion measurements. Here, we present a method using short diffusion gradient pulses only, which is able to reveal the shape of arbitrary closed pores. Compared to former approaches, the method has reduced demands on relaxation times due to faster convergence to the diffusion long time limit and allows for a more flexible NMR sequence design since stimulated echoes can be used.

Keywords

acquisition acquisitions advantageous allow amplification analytical applicable application applied appropriate arbitrary attenuations better cancer characterization closed collected combination conference considered contrary contrast convergence cylinder cylindrical described design determination diffusion directly disease domain domains double drop duration echoes employing enabling equally equals equation errors estimation even exact exactly exhibit expressions extension fails faster field finally find finite function gradient gradients infer initial inside interpolation inverse iterative iteratively last limit long lost many measure measuring medical narrow nature numerical omitted outside part phys physics pore pores porous position preserving press principal process properties propose proposed pulse pulsed pulses quantitative quotient radial radiology radon reach real recently reciprocal reconstructed recover regarding relies required sample scheme shape short simulations since solely space spaced stimulated successful suggested surrey symmetric systems talk theory transform triangular valid vector vectors volume wave whole write yielding zero