Meeting Banner
Abstract #3168

Repeatability and Variability of Graph Metrics in a Test-Retest of Whole-Brain Structural Networks.

Jennifer Andreotti1, Kay Jann1, Lester Melie-Garcia2, Thomas Dierks1, Andrea Federspiel1

1Dept. of Psychiatric Neurophysiology, University Hospital of Psychiatry / University of Bern, Bern, Switzerland; 2Neuroinformatics Department, Cuban Neuroscience Center, Havana, Cuba

Objective: to compare properties and variability of whole-brain structural networks weighted by connectivity density or by communicability.

Keywords

addition adequate adjacency although anatomical assigned atlas automated bandwidth binary brain channel characterize class cluster coefficient coil collinear common communicability comparable computed connecting connections connectivity considered construct corrected corrections correlate correlation cortical created curvature defined definition degree degrees denotes density dept diagonal diffusion direct eddy edges established every excluded exist exists exponential extracted fiber fully general generalized generated global good graph graphs head healthy important index indicating individual individuals intra inversion larger length local matrices matrix measures metrics movement network networks neurophysiology nodal node nodes nonzero normalized organization overall passed paths patterns pixel placed plot probabilistic properties property proportion psychiatric psychiatry pulses quantification quantify reduced reduces related repeatability representing retest saturation scaling scanner seed seeds served sessions similarity slice slices slightly smaller squared stability starting step streamlines strength structural structure structures subject subjects surface symmetric threshold thresholds timing tool tracking trio underwent undirected variability variation verify walks weightings whole world years