Meeting Banner
Abstract #3160

Evaluating the Accuracy of White-Matter Connectomes

Franco Pestilli1, Jason Yeatman1, Ariel Rokem1, Kendrick Kay1, Brian Wandell2

1Psychology, Stanford University, Stanford, CA, United States; 2Psychlogy, Stanford University, Stanford, CA, United States

We propose a method to evaluate the accuracy of white-matter connectomes generated using diffusion weighted MRI and fiber tractography. The method predicts the diffusion data in each voxel as a weighted sum of the contributions from all the fascicles in that voxel. We derive several connectomes using different tractography algorithms (TEND, FACT and CSD). We evaluate each connectome using cross-validation with respect to a second set of diffusion measurements in the same subject. Connectomes generated using the CSD algorithm with an intermediate order of spherical harmonic basis set (4>lmax<16) predicts diffusion measurements better than data reliability.

Keywords

accuracy allows assessing assuming audience axons basis best better brain bundles charmed choose complexity composite constrained contributions coupled creates cross deconvolution deflection derived determination diffusion distribution error evaluate evaluating expected fact fascicles fiber field full functions generate generated good harmonics hindered human identifying in vivo increasing independent indicate intermediate interpret investigators living made measured model negativity noninvasive orientation practice predict predicting prediction predictions predicts principles produce produced properties propose psychology quality quantified reliability reliably represent resolved restricted robust root sets spherical squared subject substantially super target tend tensor theoretical unique validation visual white whole worse