Meeting Banner
Abstract #3111

Compressed Sensing for Flow-Compensated Intra-Voxel Incoherent Motion Modeling

Andreas Wetscherek1, 2, Frederik B. Laun1, 3, Claudia Prieto2, 4, Cristin Tejos, 25

1Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; 2Biomedical Imaging Center, Pontificia Universidad Catolica de Chile, Santiago, Chile; 3Quantitative Imaging-Based Disease Characterization, German Cancer Research Center (DKFZ), Heidelberg, Germany; 4Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom; 5Department of Electrical Engineering, Pontificia Universidad Catolica de Chile, Santiago, Chile

The flow-compensated (FC) intra-voxel incoherent motion (IVIM) model allows probing the characteristic timescale and velocity of the incoherent motion using FC diffusion weighted MRI. To reduce the long acquisition times required, we applied a compressed sensing reconstruction exploiting sparsity of the Karhunen-Love transform domain to a 3x undersampled data set. We were able to show that the CS reconstruction improved the accuracy of the parameter maps obtained from the undersampled data making their quality comparable to those obtained from non-undersampled data.

Keywords

abdominal accelerate accelerated acceleration achieve acquisition actual allowing annual appear applicability applications applying approximation arrows attenuation available berg biomedical blood breath cancer characterization clinical close college combination compartment compensated compressed consistency contain contributions cortex covariance decay denoted describing diffusion discarding disease distributions division domain duration eigenvalues eigenvectors electrical engineering estimating evaluating experimentally exploiting exponential expressed female fitting flow fraction function goes gradient gradients hand healthy hold incoherent index indicates inferred inform initial intensities intensity intra introduced inverse isotropy king kingdom lesser limiting little liver locations long magnitude magnitudes manifests maps matrix measured measuring meter microscopic model modeling mono motion must necessarily noise observation original physics pixel proposes pseudo pulsation quality quantitative radiology randomly reconstructed reconstruction reduces regarding renal requires residual residuals resolution schemes sciences sensing separate sets simulated simulations since slice slices space sparsity spleen step suggested surrounding theory timescale timing tissue transform varying velocity vessels visually volunteer white yellow yielding