Meeting Banner
Abstract #3073

Random Matrix Theory-Based Noise Reduction for Dynamic Imaging: Application to DCE-MRI

Jeiran Jahani1, Glyn Johnson2, Valerij G. Kiselev3, Dmitry S. Novikov4

1New York University School of Medicine, New York City, NY, United States; 2University of East Anglia, East Anglia, United Kingdom; 3University Medical Center Freiburg, Freiburg, Germany; 4Radiology, New York Univeristy School of Medicine, New York City, NY, United States

 

Keywords

according achieves acquisitions adding administered agreement allows analog another application applications apply array assist averaging axial background bandwidth bottom channel city clear coil components consider considering contiguous contribution correspond corresponds covariance decreases decreasing detected determined deviation diagonal diffusion distinct distinguishes distributed distribution divided dose dots dynamic dynamics east eigenvalue eigenvalues eigenvectors energy error examine exposure fact fast features finding forming founders gather head heuristically identically independent independently indicating intervals introduced involves keep larger largest leftmost like limit little long look loss lost maps math matrix medical medicine methodology metric middle mostly moving much noise noisy nonlinear object objectively outlying passage phantom phys physical pixel principal proposed radiology random rectangles reduce reduced reduction remarkably represent respectively rightmost sample samples scanner scheme school separation shape simulated simultaneously slices snapshots specifically spectrum squared squares static statistics structural structure successive sufficiently suitable superimposed system theory thick true underlying unique universal useful variance version versions washed