Meeting Banner
Abstract #2942

Regression Into Early Adulthood: A Data-Driven Perspective of NIH Longitudinal Pediatric DTI Study

Yasheng Chen1, Hongtu Zhu2, Hongyu An2, Dinggang Shen2, Weili Lin2

1University of North Carolina, Chapel Hill, NC, United States; 2UNC-CH, Chapel Hill, NC, United States

Most of the current brain developmental studies model growth trajectory with a global parametric model such as nonlinear polynomials. These approaches may neglect subtle local temporal features in the data and the physiological meanings of the derived high order nonlinear polynomial terms may be elusive. To overcome these limitations, we proposed a powerful approach to model brain growth for large-scale longitudinal datasets from NIH pediatric DTI brain developmental study. Through the combination of the greater flexibility of the free-knot B-spline fitting with quasi-least squares longitudinal analysis, we are able to delineate the complex process of brain growth from newborns to early adulthood into a series of linear spans so that growth velocity based physiological inference can be made.

Keywords

able according adulthood aims almost always analyze anisotropy apparent approaches approximate approximation attributed birth brain capsule capture causing central certain childhood coefficients combined complex consistent correlation cortex covering datasets deriving developing development developmental diffusion diffusivity discontinuous driven early elusive enables equations error estimating event events features final fitted fitting flexibility fractional free frontal function generalized geometrical growth guarantees human identified important included inference inferences inferred initial initialized insignificant internal invasive knot knots lead least life linear local longitudinal major making matrix maturation measures minimize model modeled modeling models neighboring noise nonlinear observation occurrence original oscillations parametric particular patterns pediatric peripheral perspective perturb physiological piecewise polynomials positive postnatal powerful process quasi ranked reflect registered regression related remaining removal removed respectively revealed scale selected semi serially series side smoother spans spikes spline splines squares statistical step steps studies subtle superior template temporal tensor terms towards trajectories trajectory transition transitions velocities white years young