Meeting Banner
Abstract #2676

A Generalized Series Approach to Sparsely-Sampled fMRI

Hien Nguyen1, Gary H. Glover1

1Department of Radiology, Stanford University, Palo Alto, CA, United States

In high resolution functional MRI, it is often desirable to reduce the readout duration to make the acquired data less prone to T2* susceptibility artifacts at the expense of SNR. This can be achieved by undersampling k-space. However, the conventional Fourier transform-based reconstruction method suffers from undersampling artifacts such as high-frequency ringing and loss of resolution. In this work we propose a new imaging approach to fMRI with under-sampled data by exploiting the generalized series constraint in the penalized maximum-likelihood framework. The effectiveness of the method is characterized and illustrated by experiments at 3T.

Keywords

ability according achieved acknowledge activation adaptation address artifacts assume auditory authors available black block blocks blurring bold bottom carry checkerboard circular coefficients collected columns confirmed consisted constrain constraint constraints contains criterion denotes density derived design desirable duration dynamic education effectiveness eight encoding expense experimental exploits features formulate foundation frames framework frequency full fully function functional functions generalized ghost glover grant gratefully ground helps human illustrate illustrated improve incorporate incorporating initial interval lasted likelihood linear loss make maps masked matrix measured model modeled necessary noise nonuniform operator paper particular penalized periods priori problem proposed proposes randomized rank readout reconstruct reconstruction reduce reduces reflecting regularization represents resolution rest reversed ringing sampled samples sampling sensing series several simulation simultaneous skipping slice slices space sparse sparsely spatial spectral spiral stabilize stimulation strongly substantial suffers support suppressed susceptibility task temporal thank trajectories trans truth typically uniform uniformly unknown valuable variable vector volunteers white whose yielded zero