Meeting Banner
Abstract #2668

Predicting Image Quality of Under-Sampled Data Reconstruction in the Presence of Noise

Patrick Virtue1, Martin Uecker1, Michael Elad2, Michael Lustig1

1Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, United States; 2Computer Science, Technion - Israel Institute of Technology, Haifa, Israel

The results of under-sampling reconstruction algorithms are often compared to a fully-sampled reconstruction. This comparison is overly optimistic because even if the reconstruction removes the aliasing due to under-sampling, we would still have an inherent loss of SNR due to the reduced acquisition time. We present a process to predict image quality for a given reconstruction technique and under-sampling pattern. Using this prediction as a gold standard enables a fair comparison for reconstruction results and provides an efficient means of quickly assessing reconstruction algorithms and parameters.

Keywords

acquisition actual added addition adjusted aliasing allows amount applying assessing axial better brain capabilities channel column complete complex compute computer corrupted dataset density described developers deviation digital direct disc domain effective effectiveness efficient electrical enables engineering evaluate evaluating even expect explicitly fair full fully generate gold gradient ideal illustrate implement incurred indicates inherent institute investing known likewise limited loss martin metric modeled noise often operates optimistic overly pattern perfect phantom predicting prediction predictor predicts presence prior problem process proper quality quickly reconstruct reconstructing reconstruction reconstructions recover reduced related removes retrospective sampled sampling scaled scaling science sciences simulate simulated solution solving space sparse sparsity spoiled still strategies submitted successfully technology theory transform uniform variable variance virtue wavelet zero