Meeting Banner
Abstract #2666

Automatic Model Recovery for MRSI Reconstruction

Jeffrey Adam Kasten1, 2, Franois Lazeyras2, Dimitri Van de Ville1, 2

1Institute of Bioengineering, Ecole Polytechnique Fdrale de Lausanne, Lausanne, VD, Switzerland; 2Department of Radiology and Medical Informatics, Universit de Genve, Geneva, GE, Switzerland

Model-based MRSI reconstruction often relies upon structural MR images to characterize the sample by specifying spectrally-homogenous compartments. However, either spatio-spectral disparities between the two modalities or model mismatch will lead to additional artifacts. We therefore consider a more data-driven approach in which the raw MRSI data itself is used to estimate the generating signal model, employing a general framework predicated on principal component analysis and spatial regularization. Phantom experiments show that our method can yield highly resolved spatial and spectral components, while simultaneously surmounting a number of limitations associated with traditional Fourier reconstruction.

Keywords

accomplish achieved acquisition additional another approaches appropriate artifacts axis bounding brown bypasses central chemical choice chosen clear clearly clinical community compartment compartments compensated compensation component components concurrent conditions confound considered consisted contamination criterion decomposition describe diameter directly distribution driven eddy enabling espoused expected experimental expressed field final form forward framework fully functional furnish general generated geometry great grid height improved informatics inhomogeneity initial inner integrity interfaces inverse largest limitations linear localized magnitude maps matrix measured metabolites mismatch model modeling must next nominal numerous operator optimal outside overcome part perturbations phantom posed position positioned positive potential principal process profile promotes proposed radiology real reconstruction reconstructions recovery reduced reflect regularization remains represent residual resolution restricted sample sampling seeking seldom sense session shortcomings singular slim solutions space spatial spatially specificity spectra spectral spectroscopic static stems step surveyed synthesize system taken thick third though traditional true type typically ultimately usage ville volume whereby window yield