Meeting Banner
Abstract #2662

Discrete Tomography in MRI: A Proof of Concept

Hilde Segers1, Willem Jan Palenstijn1, Kees Joost Batenburg, 12, Jan Sijbers1

1Vision Lab - dept. Physics, Universiteit Antwerpen, Antwerpen, Belgium; 2Center for Mathematics and Informatics, Amsterdam, Noord-Holland, Netherlands

Segmentation refers to the classification of image pixels into distinct classes, typically based on their grey level. It is usually performed as a post-processing step on an MR magnitude image, which is influenced by reconstruction artifacts. In this abstract, we investigate the integration of reconstruction and segmentation into one single procedure. This combination is a regularized reconstruction problem where we exploit prior knowledge about the discreteness of the grey levels. Simulation results show that this integrated method yields better results than the conventional approach when the underlying truth is a discrete image.

Keywords

abstract accuracy accurate added algebraic allow amount apply around array assumed audience augmented available binary blood boundary brain categories chosen classes classification combination compensates complex computationally concentrate concept consider consist consisting continuous correct correctly corrupt criterion dart depicts dept differential direct discrete discreteness distinct electron employed encoding equations equiangular estimation estimations expansion exploit field filter finds fixed flowchart free function future general ground identify incorporate incorporating incorrect influenced informatics intensive introduce introduced iteration iterations iterative knowledge known linear magnitude mathematics matrix measure microscopy misclassified model modeled novel operations optimal performance phantom physics pixel pixels post prior problem procedure processing pronounced proof quantitative quantitatively radial randomly real reconstruct reconstructed reconstruction reduced refers regularized remains represents runs sampling segmentation separate simulation since smoothing solve space spokes starting step steps strategy subsequently successfully target termination thresholding tomography trajectories trajectory trans truth typically unknown unknowns update variables varying vastly vessel vessels vision visual visually yields