Meeting Banner
Abstract #2660

Comparison of an Iterative GRAPPA Method to Compressed Sensing

Lawrence Dougherty1, Walter R.T. Witschey2, Robert M, King1, Gamaliel Isaac1

1Radiology, University of Pennsylvania, Philadelphia, PA, United States; 2Surgery, University of Pennsylvania, Philadelphia, PA, United States

An iterative GRAPPA method has been developed for use on non-Cartesian sampled data. The method uses repeated application of Cartesian GRAPPA interpolation following gridding. Optimal kernel size as well as multiple kernels are investigated. Using a radially undersampled data set, GRAPPA was compared to compressed sensing. The iterative GRAPPA approach is simple to implement and executes rapidly.

Keywords

acknowledgment acquisitions adapted advanced alternate application applied auto bandwidth better bottom calibrating changing code coil composite compressed convergence convolution core cores correlation correlations cross density developed difficult element enforce evaluate even executes expands favorably fewer fully general generalized golden good gridded head highly implement implemented initial interpolated interpolation inversion iteration iterations iterative iteratively kaiser kernel kernels king knoll last little manner measured medical minimizing minutes next nonlinear operator overwrites performance phantom pixel plot post previous processing processor profile profiles project projection projections quad qualitatively quality quantitatively radial radiology rapidly reached reconstructed reconstruction regularized relationship remainder repeated resolution restored routines running sampled samples sampling scanner scheme sensing sensitivities sensitivity shading simple simply since sixteen smoothly solutions solve space spin spokes stage step streaking supported surgery targets term thick throughout trajectories trio true unknown variation varying whereas written