Meeting Banner
Abstract #2644

Improved Compressed Sensing and Parallel MRI Through the Generalized Series Modeling

Xi Peng1, 2, Leslie Ying3, Xin Liu1, 4, Dong Liang1, 2

1Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Shenzhen, Guangdong, China; 2Key Laboratory of Health Informatics, Chinese Academy of Sciences, Shenzhen, Guangdong, China; 3Department of Biomedical Engineering, Department of Electrical Engineering, The State University of New York at Buffalo, Buffalo, NY, United States; 4Key Laboratory of Health Informatics , Chinese Academy of Sciences, Shenzhen, Guangdong, China

The problem of reconstructing a high-spatial-temporal-resolution MR image sequence occurs in various MR applications, such as interventional imaging, dynamic contrast enhanced imaging, cardiac imaging, where a static reference image can be obtained with relative ease before the whole dynamic process. This work addresses the problem by integrating the generalized series (GS) model, in which the reference prior is incorporated, with standard compressed sensing (CS) and parallel imaging (PI) techniques. The proposed method is validated in a Monte-Carlo study and is shown to provide superior imaging quality with decreased g-factor to existing CS and PI based reconstruction methods.

Keywords

academy acceleration acknowledge acquisition addresses alleviated amount amplification applications behavior binary biomedical buffalo calibrating calibration central channel china coefficients coil coils combined complex compressed conditions conducts consistency constant constrain content context contrast convex decreased denotes described designed discrepancies distribution dong dynamic efficient eight electrical electrodynamics eliminate enables enforcing engineering enhanced error errors evaluate exclude exhibits expansion experiment formulated fully functions generalized head health illustrated implemented improved inconsistence incorporated incorporating informatics initialize institutes integrating introduced iterations jointly kernels laboratory localized locations mask mixed model modeling mostly noise noisy normalized noting occurs operator parallel pattern percentage prior probably problem program projection property proposed quality realizations receive reconstructing reconstruction rectangle reduction regularization regularized representation represents residual resolution root sampled samples sampling schemes sciences selected selection sensing sensitivity series severe simulated space sparser sparsity spatial special spirit square static suffers superior table target technology temporal tuned uniform update validated variable variations various white whole worth