Meeting Banner
Abstract #2642

Improved Balance of Artifact/noise Level and Fine Structure Preservation in Highly Accelerated PPI

Dengrong Jiang1, Kui Ying1, Feng Huang2

1Engineering Physics, Tsinghua University, Beijing, China; 2Philips Healthcare, Beijing, China

Partially Parallel Imaging (PPI) has been widely used in clinical practice to accelerate acquisition, but at the cost of reduced Signal-to-Noise Ratio (SNR). Often, regularization schemes are used to preserve SNR. However, existing regularization schemes have the difficulty to balance SNR and the preservation of boundaries and fine structures, especially when the acceleration factor is high. In this work, we adopted non-local sparse as the regularization term for PPI and achieved better balance of SNR and fine structure preservation compared with CS-SENSE. Low errors image was reconstructed at acceleration factor as high as 8 with an 8-channel head coil.

Keywords

accelerate accelerated acceleration according achieve achieved achieves acquisition adopt advantage among arrays artifact artificially audience axial balance best better bottom boundaries brain brightened channel china clearly clinical clinicians clustered coil combination combine compressive constraint corp correlation cost definition determines difficulty disc domain dong encoding engineering equally error errors especially exemplar existing experiment experimental exploit exploited fine fragments full fully function great head highly illustrate impact implicate importantly improved in vivo iterative listed local located maps measures minimal much noise norm notations nuclear objective often onto parallel partial partially patch patches patterns physics pictures potential practice preliminary preprint preservation preserve preserved preserving proposed quality rank realized reconstructed reconstruction reduce reduced reduction regularization resolution respect root sampled sampling scheme schemes scientists sense sensing sensitivity setup shanghai similarity simulate solve space spaced sparse sparsity spatial split square stands structure structures sufficiently system target term transform variation whose widely wise zoomed