Meeting Banner
Abstract #2637

Multi-Contrast JSENSE

Xiaodong Ma1, Feng Huang2, Chun Yuan1, 3, George Randy Duensing4, Hua Guo1

1Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China; 2Philips Healthcare, Beijing, China; 3Department of Radiology, University of Washington, Seattle, WA, United States; 4Philips Healthcare, Gainesville, FL, United States

Since using all the calibration signals from images with different contrasts potentially provides more information of coil sensitivities, we propose to use multi-contrast information to enhance JSENSE. The same coil sensitivities as well as multiple contrast images are jointly reconstructed in the new model. Preliminary results demonstrated that the multi-contrast JSENSE algorithm with more accurate initialization results in images with improved quality, while costs no more computational time than original JSENSE algorithm

Keywords

accelerated acceleration accurate achieved advantage among applications array arrows artifacts artificially assumed audience avoid best better biomedical brain calibration called channel china clinical clinicians coil coils computational computed constant contrast contrasts corp costs desired determines disk engineering enhance enhanced equation estimation explain fact five form full gain gauss generality highly impact implementation improved in vivo independent initial initialization initially instead integrated iteration iterations iteratively joint jointly knoll lead least loss lowest mask medicine minimization model moreover much multiplying national newton noise original paper parallel patient percentage plan poison potential potentially preliminary previous problem program propose proposed quality radiology randy reconstruct reconstructed reconstruction reduced regularized researchers respectively sampled sampling scanned scanner school sense sensitivities sensitivity series shanghai share simultaneously since solved solving space square supported system target technology terms theoretically theory traditional unknown unpredicted usually verified workshop year yields yuan zero