Meeting Banner
Abstract #2634

Non-Iterative Bayesian Reconstruction Algorithm for Undersampled MRI Data

Gengsheng Lawrence Zeng1, Edward V.R. DiBella1

1Radiology, University of Utah, Salt Lake City, UT, United States

A non-iterative Bayesian reconstruction algorithm is derived to reconstruct dynamic undersampled MRI images. The k-space is radially sampled and 24 lines are acquired at each time frame. The Bayesian constraint uses the combination of immediately-before, current, and immediately-after data (referred to as the secondary data) to assist the image reconstruction. Unlike the ad hoc HYPR-type methods, the proposed algorithm is analytically derived and is able to track the object motion. The secondary data must be pre-filtered with a ramp filter before a small fraction of it is added to the current data for image reconstruction, with a modified ramp filter.

Keywords

able acquisition actually adjacent advantages analytically angular another applied applies apply array assist assisting available calculus cardiac chosen city closed coil coils combination combined component components computation concentration considers consist constant constrained constraints contexts controls derived developed displayed domain drawback dynamic example expressed fact faithfully fast fidelity filter filtered finite form frame frames frequency function global gray highly immediately implemented incorporated individual influence intensity introduces issue iterations iterative lake locations longer manner many maps matrix minimization modeling modified motion movements must myocardial myocardium need needs newly noise object objective observe offset optimal paper patterns perfusion phys practice prepare primary problem projection projections proposed proposes quadratic radial radially radiology ramp reach recent reconstruction reconstructions referred relatively removed resolved rows salt sampled sampling scale scanner secondary sequential sets significantly simple solution space spaced stop summation suppressed term track transform trio type uniform uniformly utilized variation