Meeting Banner
Abstract #2623

Model-Based Reconstruction for Physiological Noise Correction in Functional MRI

Matthew J. Muckley1, 2, Scott J. Peltier1, 2, Douglas C. Noll1, 2, Jeffrey A. Fessler3

1Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States; 2Functional MRI Laboratory, University of Michigan, Ann Arbor, MI, United States; 3Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, United States

A novel application of low rank methods combined with temporal Fourier sparsity regularization and random sampling for removal of physiological noise in functional MRI is presented. This approach has the potential to recover high temporal frequency characteristics of the physiological noise while sampling these signals well below the Nyquist rate on average. The method is validated in a resting state connectivity task, where it is used to reconstruct a data set with high spatiotemporal resolution before removing physiological noise using low pass filtering.

Keywords

able addition alias allows analyses analyzing anything applied applies applying arbor asked assume basis biomedical blue brain calculations capture cardiac combine combined completion computer confound confounded connectivity constraint constraints contain correction correlation correlations cortex cost cutoff decimated described differencing dimension domain electrical encoding engineering evaluate evolution examining example experiment explosion external filtered filtering finite formulated frequency function functional functions helps highlighting ideal implicitly incoherently incorporates inverse laboratory magnetization maps mathematically matrix model much networks neural noise object operator original partially particular pass pattern peaks penalizing performance physiological posterior potential problem problems promoting propose proposed random rank rearranged recent reconstruct reconstructed reconstruction reconstructions recording recovering recovery reduced regularization removal resolution respiratory resting roughness sampled samples sampling scanned scanner science separable series served shot simulate simulated slice smooth sparse sparsity spatial spectrum stack studies subject temporal theory think transverse useful vector ventricles volunteer write years