Meeting Banner
Abstract #2611

Pseudo-Random Center Placement O-Space Imaging: Optimizing Incoherence for Compressed Sensing

Leo K. Tam1, Gigi Galiana2, Jason P. Stockmann3, Andrew Dewdney4, Terence W. Nixon2, Dana C. Peters2, Robert Todd Constable2, 5

1Biomedical Engineering, Yale University, New Haven, CT, United States; 2Diagnostic Radiology, Yale University, New Haven, CT, United States; 3Martinos Center, Massachusetts General Hospital, Boston, MA, United States; 4Siemens AG Healthcare, Erlangen, Bavaria, Germany; 5Neurosurgery, Yale University, New Haven, CT, United States

O-space imaging has shown distributed artifacts due to non-linear encoding via spatially-varying center placements (CPs). The success of non-linear encoding methods in the image domain lead to development of an approach to maximize incoherence in a sparse transform domain such as the Daubeuchies wavelets. By pseudo-randomizing CPs, an incoherence optimized O-space acquisition produced superior reconstructions under a compressed sensing framework.

Keywords

acceleration acquisition affected aliasing allow amplitude another applying array artifacts audience available background behave best better biomedical built channel coefficients coil comes communities complementary compressed convex coordinates corroborates coverage created custom denotes diagnostic dissipate domain efficiency efficiently eight encoding enforcing equations evenly evidence examined experimental fast feature fellowship finger forward function gains general generates gradient gradients graduate greatest haven highest improved in vivo incoherence incoherent increasing infer initial insert isolated iterated iterative iteratively known length like linear local mathematically matrix maximize nature necessary neurosurgery noise norm objective optimization optimized orientations parallel patterns peak peter peters placed placement placements predictions preliminary produce projection promoting proposes pseudo pulse radial radiology random randomized receive receiver reconstruction reconstructions relating relies representative represents requires retaining sample sampling scales sense sensing sensitivity several similarly simulations solution space sparse sparsity spatial spatially spread squared straight strategy strength suitability supported system tailored target traditional transform transmit uniform utilizes varying wavelet whereas