Meeting Banner
Abstract #2606

Self-Updating NonLocal Total Variation for Highly Undersampled Variable Density Spiral Reconstruction

Sheng Fang1, Wenchuan Wu2, Kui Ying3, Hua Guo2

1Institute of nulcear and new energy technology, Tsinghua University, Beijing, China; 2Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China; 3Department of engineering physics, Tsinghua University, Beijing, China

A Nonlocal Total variation (NLTV) that automatically refines the image-dependent weights was proposed for reconstructing highly undersampled variable density spiral (VDS) imaging data. Unlike existing NLTV-related method, the proposed method doesnt rely on a reference image for weight map estimation. Instead, it automatically updates the weight based on a filtered intermediate image. The wavelet soft shrinkage method is used for the filtering step. Since the aliasing artifact of VDS is incoherent, it can be expected that the shrinkage can perturbation of aliasing artifact and increase the accuracy of weight computation. The in vivo VDS experiment demonstrates that the proposed method can effectively suppress noises amplification and perverse better image details than TV.

Keywords

acquisition aliasing alleviates alpha amongst amplification amplified applied arrows artifact audience automatically best better biomedical block brain cause channel china clinicians coil computation computed considerable constrained covers defined density dependent depends derivatives desired details discrete distributed distribution domain edges effective effectively efficiently encoding energy engineering entire error exploiting extends fang fast feasibility filtered filtering fine five formulated foundation fully gained generalized grant highly improve in vivo incoherence incoherent initial institute intermediate introduces king loss maps matrix medicine much national natural needed neighborhood noise nonlinear nonlocal obvious parallel part patches physics pixel plan preserve preserved preserving previous problem processing program promoting proposed quality recently reconstructed reconstructing reconstruction reduce reduction refines regularization regularized removes researchers respect respectively reveal scanner school science self sense sensing sharper shrinkage similarity soft sparsity specifically spin spiral squares step structure structures success supported suppress suppressed suppression target task technology uniformly unlike updated updates updating variable variance variation wavelet year zoomed