Meeting Banner
Abstract #2604

An Efficient Compressed Sensing Reconstruction Robust to Phase Variation on MR Images

Satoshi Ito1, Kazuki Nakamura1, Yoshifumi Yamada1

1Research Division of Intelligence and Information Sciences, Utsunomiya University, Utsunomiya, Tochigi, Japan

We present a new Compressed Sensing reconstruction that is robust to phase variations in MR images. When the signal trajectory in k-space is symmetrical with respect to its origin, the k-space signal corresponding to the real and imaginary parts of the complex image can be synthesized independently by restricting the k-space signal to an even function or an odd function. The proposed method involves random but symmetrical k-space acquisition and independent reconstruction of the real and imaginary parts of images using the real-valued constraint.

Keywords

acquisition addition adopted applicable application applying artifacts attempted best better black blood calculation central collected combining complex components compressed constraint correcting correction decomposition degrade degraded density directly distortions distribution division efficient encoding equipment error even except field finally flow focus foundation frequency fully function functions general give grant grid imaginary imperfection improved improves incoherence independent independently indicates inhomogeneities intelligence inverse involves iteration iterative japan kind like locally makes math matrix mutual noise noted numerical operator origin paper part parts peak performances potential procedure proportional proposed providing pure quality quasi random randomly rather read real reconstruct reconstructed reconstruction reconstructs reduce reduces reduction relation removed removing representative required respect respectively restricting resultant robust sampling scanned scanner science sciences scientific selected sensing several significantly simple simulate since slice slices smaller soft space spin static strong symmetrical symmetry synthesized table technology telecommunications temporally thank theoretically thresholding trajectory transform variation variations varying vector volunteer wavelet widely