1EECS,
University of Michigan, Ann Arbor, MI, United States; 2BME,
University of Michigan, Ann Arbor, MI, United States
We apply a Monte-Carlo method for estimating Stein's Unbiased Risk Estimate (SURE) to regularization parameter selection for L1-SPIRiT auto-calibrating parallel imaging reconstruction. We validate the error criterion against observed mean-squared error and demonstrate the L1-SPIRiT reconstruction quality using the SURE-optimal regularization parameter for a range of noise levels using fully-sampled multi-channel real data.