Meeting Banner
Abstract #2494

Quality-Based UnwRap of SUbdivided Large Arrays (URSULA) at 9.4T

Johannes Lindemeyer1, Ana-Maria Oros-Peusquens1, Kaveh Vahedipour1, Nadim Jon Shah1, 2

1Institute of Neuroscience and Medicine 4, Forschungszentrum Jlich, Jlich, Germany; 2Department of Neurology, Faculty of Medicine, JARA, RWTH Aachen University, Aachen, Germany

Unwrapping of MR phase data becomes very time consuming for high-resolution data acquired at ultra-high fields. We present a new algorithm, URSULA (UnwRap of SUbdivided Large Arrays), an approach splitting up the original matrix in smaller-sized 3D volumes which are unwrapped individually. The computed subsets are assembled into a whole volume result using a quality-based approach. Sequential or parallel computing is applicable, especially the latter allowing for a dramatic gain in computing speed. Simulations show good reliability for a moderate number of subsets. The performance of the algorithm is exemplified on a human in vivo dataset measured at 9.4T.

Keywords

achieve achieved acquisition although appear applied applying array arrays audience avoided background becomes borders bottom boundary brain cause chemical choose cluster common complex computational computed computer computing concerned conditions confinement constant correction correspond dataset datasets decrease described despite developed distributing dramatically edge edges evolution example excitation exemplary facilitate faster feasible field framework fulfills full furthermore gain gained global grid growing guided huge human ignores illustrates implemented implies importance in vivo individual informed inhomogeneous intends isotropic last local making mapping mask matched matching materials measured medicine minor minutes mismatched much must neglecting neurology nodes noisy occasionally offers offset offsets optics outperforms process produced qualities quality quantitative quicker random rating reconstruct reduced reducing regarding regular related relations resolution scanner seek shah shared significantly since slight smoothed spacing spatial spatially speed stable subdivide subset subsets successfully support surfaces susceptibility synthetic taken target tends terms theorem theory traditional ultra unexpected unwrap unwrapped unwrapping variations volume volunteer whole