Meeting Banner
Abstract #2479

T1 Mapping: Should We Agree to Disagree?

Mathieu Boudreau1, Nikola Stikov1, Bruce G. Pike1

1Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada

A recent study reported that three commonly used methods for T1 mapping (Inversion Recovery, Look-Locker, Variable Flip Angle) measure similar T1 values in phantoms, but disagree <I>in vivo</I> at 3T (VFA overestimated and LL underestimated relative to IR). This work investigates possible confounding factors that may explain the T1 trends observed <I>in vivo</I>. Bloch simulations tested the effects of inaccurate B1 mapping and spoiling on T1 for all three sequences. These simulations predict a systematic bias in VFA and LL due to these effects, consistent with trends observed <I>in vivo</I>, highlighting the importance of proper calibration with the IR gold standard.

Keywords

account accurate acquiring acquisition actual addition agree agreement anisotropy bias black brain calibration cause characterizing common commonly consider correction correspond corresponds dashed demonstrating described deviates diffusion disagree disagreement dotted ensured error excitation exhibit experimental explain fitted fitting fully generate gold gradients graph healthy hence highlights identical imperfect implemented importance important in vivo inaccuracies inaccurate incomplete increment indicate indicates inhomogeneities institute integral inversion leads least like longitudinal magnetization many mapping maps measure measured median mode model neurological nominal observe overall overestimated package part partial particularly phantoms pike predict predicted prior proper protocols pulse pulses quantitative recent recovery relationship repeating report reported represented robust saturation scaled scaling scanner select sensitive shape simulated simulation simulations site slice slightly software spin spins spoiling stable steady strongly studies subject subjects suggest systematic timing tissue tracts transfer trend trends trio true typically underestimated underestimation variable variations vertical white whole worsening