Meeting Banner
Abstract #2459

Model-Based MR Parameter Mapping with Sparsity Constraint

Bo Zhao1, 2, Fan Lam1, 2, Wenmiao Lu3, Zhi-Pei Liang1, 3

1Department of Eletrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States; 2Beckman Institute , University of Illinois at Urbana-Champaign, Urbana, IL, United States; 3Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, United States

A new model-based reconstruction method is presented to directly reconstruct parameter maps from highly undersampled, noisy k-space data. Some representative results of T2 brain mapping are shown to illustrate the performance of the proposed method. It should prove useful for fast MR parameter mapping with sparse sampling.

Keywords

acquisition added address allows alternating although another applicable applied apply approaches appropriate approximation artifacts assume auxiliary block brain bypassing champaign completely complex computer consistent constraint constraints continuation converted denoted denotes density dependent describe described determine deviation diagonal difficult directly distribution echoes effectively enable encoding enforce enforcing engineering entry equivalent error estimation example experiment explicit expressed fast finite fixed formulation frames fully function functional generally half highly illustrate imposing improved known learning limited long mapping maps matrix measured minimization model mutually newton noise noisy norm normalized numerical observation operation optimization partial penalized performance phantom practical practically problem procedure procedures process produces proper propose proposed quasi reconstruct reconstructed reconstruction reduced regularization related relatively representative represents sampled sampling sensing severe significantly simulates since soft solve solving space spacing sparse sparsity specifically spin square step successful suffers table takes temporal thresholding tissue tool transform transverse type update useful utility utilizing valuable variables various vectors white