Meeting Banner
Abstract #2416

Effects of Denoising in the Estimation of T2* from Images Acquired Through Dixon Imaging

Rodrigo Moreno1, Thobias Romu2, Olof Dahlqvist Leinhard1, Magnus Borga2, Ebo de Muinck1

1Department of Medical and Health Sciences, Linkping University, Linkping, stergtland, Sweden; 2Department of Biomedical Engineering, Linkping University, Linkping, stergtland, Sweden

This abstract explores the effect of prefiltering in the estimation of T2* from images acquired through symmetric Dixon imaging. Non-stationary Gaussian noise is removed from 8-point Dixon images acquired from the abdomen. T2* is computed by curve fitting of the in-phase images and the improvement of the estimation is computed through R2. The mean of R2 in is improved with the filtering from 0.73 to 0.75, from 0.84 to 0.89 and from 0.84 to 0.93 for fat- and water-dominant regions and ROIs in the liver respectively. Results suggest that advanced signal model fitting is only necessary in the fat-dominant regions.

Keywords

abdominal abstract acquisition adaptive advanced advantageous allows amount applications around array arrows audience better biomedical body chosen clinical clinicians coefficient coil computed computing considered considering considers coup create curve decaying determination diagnosis diseases distribution dominant echoes eight engineering especially estimation evaluate evaluating even every exclusively explores exponential extract extracted fatty filtered filtering filters fitting good gradient health histograms ideal imaginary improved improvement independently inhomogeneities intended inverse involved isotropic link liver local magnitude mainly maps marked mart masks medical model modeled necessary negligible noise noisier noisy nonlocal objectively opposite others parts pass patient pats ping positive proposed quickly real reasons reconstruction reduction relevant removal required researchers resolution respectively sampled scanner sciences sensitive separation since smoothly spatial spatially stationary suggest symmetric symmetrically target usually variation variations vary varying water