Meeting Banner
Abstract #2408

A Systematic Evaluation of an Auto Regressive Moving Average (ARMA) Model for Fat-Water Quantification and Simultaneous T2* Mapping

Axel J. Krafft1, Brian Allen Taylor1, Hannah Lin1, 2, Ralf B. Loeffler1, Claudia M. Hillenbrand1

1Radiological Sciences, St. Jude Children's Research Hospital, Memphis, TN, United States; 2Rhodes College, Memphis, TN, United States

Iron overload assessment is one of the most prominent applications of multi-echo GRE-based quantitative T2* mapping. One of the major confounding factors arises in the presence of fat due to additional modulations of the mGRE signal. However, these modulations can be modeled and have led to dedicated techniques for fat-water quantification with T2* estimation. Here, we systematically analyze a recently proposed autoregressive moving average (ARMA) model for its ability to simultaneously quantify fat-water concentrations and the associated T2* times. The ARMA model is compared to conventional fitting approaches and evaluated in phantoms and volunteer data.

Keywords

according accounted accounts acquisition address advanced agar agreement alternative ambiguities amplitude amplitudes another apparent apparently appear appropriate arises arrows assessment assumes auto body breath bulk challenging chemical children clinical complex component concentration concentrations confounding considered consistent content context contributions correct criterion decay decrease deviations directly discussed domain echoes equation equations especially estimation evaluated evaluation even evolution excellent except expected expressed fails fast finally findings fitting fraction fractions frequency future good gradual healthy heart hepatic hold identify include increasing increment independent individual initial instabilities introduce iron iterative knowledge leading lipid localized longer magnitude major mapping maps matrix measured methylene minimal mixtures model modeling models modulations moving nearly needs neglecting noise offset optimized overall overload peak peaks phantom phantoms presence previously prior protons quantification quantitative radiological radiology reeder regressive reliably reported respective routines scenarios sciences seems separate shortens simultaneous slice specimen spectral spectrum system temperature theoretical third towards underlying volume volunteer water wood