Meeting Banner
Abstract #2382

Gradient-Modulated SWIFT

Jinjin Zhang1, 2, Djaudat Idiyatullin1, Curtis Andrew Corum1, Naoharu Kobayashi1, Michael Garwood1

1Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States; 2Department of Physics, University of Minnesota, Minneapolis, MN, United States

We report Sweep Imaging with Fourier Transformation (SWIFT) using time varying gradients during excitation. Gradient-modulated offset independent adiabaticity (GOIA) approach was used to modify the pattern of the RF pulse. Linear response theory was used to derive the signal evolution. A specific correlation method to retrieve the spin density for this case was developed. This method greatly increases the versatility of the SWIFT method and allows, for example, RF power reduction and increasing of the effective acquisition bandwidth. These conclusions are supported by simulations, resolution phantom experiments, and imaging of human brain in vivo using different types of gradient modulation.

Keywords

according achieve achieved achieves acquisition allows amplitude apparent applies apply artifacts assumed attained bandwidth better brain capture changing choices comparable component concentrated constant constraints contrast correlation created density dependent derive derived determined developed diagrams effective efficiency emerging enough equation equations evolution evolves example excitation excited experiment finally fitting flexibility freely frequency function funded furthermore gaps give gradient gradients grants gray hardware healthy highly human in vivo independent introduces keep kinds least limited linear materials modified modify modulated modulation nearly needed notice nuclear offers offset original oxford pattern phantom physics power press principle profile properties pulse pulses quality readout reconstruction reduce reduction relationship repetition requires resolution response retrieve retrieved reveals scanner separated short simulated simulation simulations simultaneous slope solution spectral spin spins sweep swift theory transform transformation transverse twice type ultra univ utilize utilizes various varying volunteer white